A flavour of omics approaches for the detection of food fraud
نویسندگان
چکیده
Food fraud has been identified as an increasing problem on a global scale with wide-ranging economic, social, health and environmental impacts. Omics and their related techniques, approaches, and bioanalytical platforms incorporate a significant number of scientific areas which have the potential to be applied to and significantly reduce food fraud and its negative impacts. In this overview we consider a selected number of very recent studies where omics techniques were applied to detect food authenticity and could be implemented to ensure food integrity. We postulate that significant reductions in food fraud, with the assistance of omics technologies and other approaches, will result in less food waste, decreases in energy use as well as greenhouse gas emissions, and as a direct consequence of this, increases in quality, productivity, yields, and the ability of food systems to be more resilient and able to withstand future food shocks.
منابع مشابه
FDiBC: A Novel Fraud Detection Method in Bank Club based on Sliding Time and Scores Window
One of the recent strategies for increasing the customer’s loyalty in banking industry is the use of customers’ club system. In this system, customers receive scores on the basis of financial and club activities they are performing, and due to the achieved points, they get credits from the bank. In addition, by the advent of new technologies, fraud is growing in banking domain as well. Therefor...
متن کاملPresenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...
متن کاملImproving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study
Background We aimed to identify the indicators of healthcare fraud and abuse in general physicians’ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse. Methods We applied data mining approach to a major health insurance organization dataset of private sector general physicians’ prescription claims. It involved 5 ste...
متن کاملMEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کامل